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Quantizers and Quantization Noise (1)

• Unipolar N-bit quantizer:
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Quantizers and Quantization Noise (2)

• M-step mid-rise quantizer:

• M-step mid-tread quantizer:
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Quantizers and Quantization Noise (3)

• Sampled signal:

• Quantization error:

16-step 

quantization 

used

f/fs
irrational!
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Quantizers and Quantization Noise (4)

• FFT:

• Sampled signal (f = fs/8):
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Binary Quantization (1)

• Quantization error:

• FFT:

3ff
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Binary Quantization (2)

• Modeling the gain:

• Minimize mean square error of e:

opt.:
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MOD1 as an ADC (1)

• Linear modeling:
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MOD1 as an ADC (2)

• Continuous-time implementation:

• Discrete-time switched-capacitor implementation:

y
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MOD1 as an ADC (3)

• Continuous-time waveforms:

• Z-domain model: change in 

v pattern

v

y

v

y
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MOD1 as an ADC (4)

• Stable operation:
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If y(n) is bounded,

Perfectly accurate for N → ∞.
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MOD1 as a DAC

• Error feedback structure: → recycled error!

= y - v

Same as for ∆Σ loop → another option for DAC. 
(For ADC, impractical!)
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MOD1 Linear Model (1)

• Z-domain analysis:
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MOD1 Linear Model (2)

• Frequency-domain analysis:
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Mean square of qo:

(inband shaped
quant. noise)

Signal-to-quantization 

noise ratio

(for OSR >> 1)

# of levels in Q

16temes@ece.orst.edu May 2005

Simulation of MOD1 (1)

• Output spectrum for full-scale sine-wave input:

Looks ok, but SQNR 5 dB less than the formulaic.
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Simulation of MOD1 (2)

• SQNRs for different frequencies:

Sine wave inputs
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Simulation of MOD1 (3)

• In-band quantization noise power:

Vref = ±1

mean square of 

inband noise

DC input level

DC input level
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MOD1 Under DC Excitation (1)

• Idle tones:

• u = y(0) = ½:

• For u = 0.01, tones at k.fs/200!

possible 
values 
of s(n)

k = 1, 2, …
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MOD1 Under DC Excitation (2)

• Let u = a/b, a and b odd integers, and 0 < a < b. Also, let |y(0)| < 1. 

Then, the output has a period b samples. In each period, v(n) will 

contain (b+a)/2 samples of +1, and (b-a)/2 samples of -1.

• If a or b is even, the period is 2b, with (a+b) +1s and (b-a) -1s.

• If v(n) has a period p, with n +1s and p-m -1s, the average 

v = (2m - p)/p. Hence, u = v is also rational. Thus, rational 

dc u ⇔ periodic v(n).

• Periodic v(n): pattern noise, idle tone, limit cycle. Not instability!

• For u = 1/100, tones at k·fs/200, k = 1, 2, … some may be in the 

baseband. Often intolerable!
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Stability of MOD1

• MOD1 always stable as long as |u| ≤ 1, and |y(0)| ≤ 2:

• If u > 1 (or u < 1), v will always be +1 (or -1) ⇒ y will 
increase (or decrease) indefinitely.

• If |u(n)| ≤ 1 but |y(0)| > 2, then |y(n)| will decrease to < 2. 
Output spectrum always a line spectrum for MOD1 with 

dc input (rational or not).

( )[ ] )()1(sgn)1()( nunynyny +−−−=

|[  ]| ≤ 1 ≤ 1

≤ 2

22temes@ece.orst.edu May 2005

The Effects of Finite Op-Amp Gain (1)

• Degraded noise shaping:

Ap 11 =−→
pole error, dc 
gain of NTF f

P
S

D
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The Effects of Finite Op-Amp Gain (2)

• Dead zones:

for u > 0, eventually ku > 1 

and two 1’s occur.

v = -1

+1

-1

v = -1

+1

-1

For A < ∞: , p = 1 - 1/A

Ideally:
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The Effects of Finite Op-Amp Gain (3)

• For v > 0,

(Two 1’s occuring)

For A ≈ 103:

umin ~ 1/(2A)
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Decimation Filters for MOD1 (1)
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• The sinc filter:
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Decimation Filters for MOD1 (2)

• Responses:

h1(n)

Gain 
response

H1(z)

n

1/N

Areas around
notches fold back 

to baseband after 
decimation if 
N = OSR. 
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Decimation Filters for MOD1 (3)

• Implementation:

Total noise after ideal LPF; Much less than σq1
2! 

Inband noise after H1: Inband noise before H1:

Total noise after H1; Too much!

Assuming e(n) and e(n - N) are uncorrelated:

σe
2
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Decimation Filters for MOD1 (4)

• The sinc2 filter:
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Decimation Filters for MOD1 (5)

• Response:

• Implementation:
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